Approaches to Conceptual Clustering

نویسندگان

  • Douglas H. Fisher
  • Pat Langley
چکیده

Methods for Conceptual Clustering may be explicated in two lights. Conceptual Clustering methods may be viewed as extensions to techniques of numerical taxonomy, a collection of methods developed by social and natural scientists for creating classification schemes over object sets. Alternatively, conceptual clustering may be viewed as a form of learning by observation or concept formation, as opposed to methods of learning from examples or concept identification. In this paper we survey and compare a number of conceptual clustering methods along dimensions suggested by each of these views. The point we most wish to clarify is that conceptual clustering processes can be explicated as being composed of three distinct but inter-dependent subprocesses: the process of deriving a h i erarchical classification scheme; the process of aggregating objects into individual classes; and the process of assigning conceptual descriptions to object classes. Each subprocess may be characterized along a number of dimensions related to search, thus facilitating a better understanding of the conceptual clustering process as a whole.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept Tree Based Clustering Visualization with Shaded Similarity Matrices

One of the problems with existing clustering methods is that the interpretation of clusters may be difficult. Two different approaches have been used to solve this problem: conceptual clustering in machine learning and clustering visualization in statistics and graphics. The purpose of this paper is to investigate the benefits of combining clustering visualization and conceptual clustering to o...

متن کامل

Title: Graph-based Hierarchical Conceptual Clustering Graph-based Hierarchical Conceptual Clustering

Hierarchical conceptual clustering has been proven to be a useful data mining technique. Graphbased representation of structural information has been shown to be successful in knowledge discovery. The Subdue substructure discovery system provides the advantages of both approaches. In this paper we present Subdue and focus on its clustering capabilities. We use two examples to illustrate the val...

متن کامل

Conceptual Clustering of Complex Objects: A Generalization Space based Approach

A key issue in learning from observations is to build a classification of given objects or situations. Conceptual clustering methods address this problem of recognizing regularities among as set of objects that have not been pre-classified, so as to organize them into a hierarchy of concepts. Early approaches have been limited to unstructured domains, in which objects are described by fixed set...

متن کامل

Clustering the Web 2.0

Ryszard Michalski has been the pioneer of Machine Learning. His conceptual clustering focused on the understandability of clustering results. It is a key requirement if Machine Learning is to serve users successfully. In this chapter, we present two approaches to clustering in the scenario of Web 2.0 with a special concern of understandability in this new context. In contrast to semantic web ap...

متن کامل

Efficiently Finding Conceptual Clustering Models with Integer Linear Programming

Conceptual clustering combines two long-standing machine learning tasks: the unsupervised grouping of similar instances and their description by symbolic concepts. In this paper, we decouple the problems of finding descriptions and forming clusters by first mining formal concepts (i.e. closed itemsets), and searching for the best k clusters that can be described with those itemsets. Most existi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1985